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Kinematic formulation of rotational gas flow 
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It is shown that for the steady isoenergetic rotational flow of an ideal gas, both 
the specific enthalpy and the speed of sound can be expressed as functions of the 
velocity. As a result, it  is possible to formulate the equations of motion so that 
the velocity is the only dependent variable. For a gas whose enthalpy and sound 
speed are functionally related, the results are a generalization of those for a 
perfect gas. If the enthalpy and sound speed are independent variables, the new 
formulation leads to a single vector equation whose solution completely deter- 
mines the flow. 

1. Introduction 
The steady flow of an ideal gas is governed by equations expressing the con- 

servation of mass, momentum, and energy, supplemented by an appropriate 
equation of state. The dependent variables that are introduced can be classed 
into two groups. One consists of the kinematic variables, which are the com- 
ponents of the vector velocity. The other group contains the thermodynamic 
variables such as the pressure, density, entropy, etc. If the flow is irrotational, 
all these variables are expressible in terms of one new variable, the velocity 
potential. The problem is then reduced to the study of a single non-linear partial 
differential equation in one unknown. This reduction is in general not possible 
for a rotational flow. In  that case, one may still be able to eliminate the thermo- 
dynamic variables, so that the equations contain only the vector velocity as an 
unknown. Such equations will be said to constitute the kinematic formulation 
of the flow. Although this new formulation may not make it easier to solve a, 
given problem, it can be used to study fl,ows by means of inverse methods. 

The kinematic formulation of rotational flow was first obtained by Crocco 
(1937) for the special case of isoenergetic flow of a perfect gas in the absence of 
external forces. The results were extended by Prim (1952) to non-isoenergetic 
(but still adiabatic) flows of a more general gas obeying the power-law equation 
of state 

where p, p ,  and s are the density, pressure, and specific entropy. X(s) is an arbi- 
trary function of s and k is a constant. Prim also showed that all the thermo- 
dynamic variables except the pressure can be eliminated for an even more general 
gas obeying the product equation of state 

P = P ( P ) X b ) ,  (1.2) 
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where P(p) is an arbitrary function of p. These results have also been extended 
to diabatic flows (Gustafson & Krzywoblocki 1957). 

For any real gas, there are temperature ranges in which internal modes of 
energy are excited. As long as the excitation process is fast enough to maintain 
local thermodynamic equilibrium in the flow, the gas can still be treated as an 
ideal gas, but with a more involved equation of state. For example, the excitation 
of rotational and vibrational modes of a polyatomic gas (without dissociation) 
can be represented by the equation of state of a thermally perfect gas. (This 
is a gas that still obeys the law p = pRT with R constant, but whose specific 
heats are functions of temperature.) A gas that is partially dissociated or ionized 
will in general have no simple equation of state. All the work on the kinematic 
formulation of rotational flow referred to above does not apply to any of these 
cases; even the thermally perfect gas law satisfies neither (1.1) nor (1.2). The 
questionnaturally arises as to  whether a kinematic formulation can be constructed 
to include these cases. Current interest in this question is motivated by the pre- 
valence of very high speed flows that give rise to high temperatures in strongly 
rotational stagnation regions. 

The purpose of this paper is to show that at least for isoenergetic flows the 
question can be answered affirmatively. A surprising result of the investigation 
is that the flow of a gas obeying a perfectly arbitrary equation of state (such as 
a, partially dissociated or ionized gas) possesses certain simple properties that are 
not present in a perfect or thermally perfect gas. Although external forces are 
neglected in the analysis, the results can easily be generalized to include them. 
In  order to introduce the ideas in a simple manner, the case of incompressible 
flow will be discussed first. 

2. Kinematic formulation of incompressible flow 
The equations governing an incompressible flow are 

divV = 0, (2.1) 

(2.2) 

(2.3) 
If all the streamlines pass through a region where p + +pV2 is constant (such as 
uniform flow), it follows from (2.3) that 

(2.4) 
where po  is the stagnation pressure, which is a constant for the whole flow. If 
the gradient of (2.4) is substituted into (2.2), one obtains? 

i.e. the flow is irrotational. Equations (2.1) and (2.5) constitute the kinematic 
formulation of an irrotational incompressible flow. By introducing a velocity 

t Equations (2.5) and (3.8) should actually be replaced by the less stringent condition 
for a Beltrmi flow, namely V x curl V = 0. This does not affect the argument for a kinematic 
formulation. In most problems of interest, such as planar or axisymmetric flow, a 
Beltrami flow is also irrotational. 

-(l/p)gradp = V.gradV = curlVxV++gradV2, 

V. grad ( p  + ipV2) = 0. 

where V is the vector velocity. From (2.2) it follows that 

P + iPV2 = Po, 

curlV = 0, (2.6) 
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potential, determination of the velocity field is reduced to the solution of La- 
place’s equation. Once thevelocityis known, the pressure is immediately obtained 
from (2.4). 

I n  the general case where (2.4) and (2.5) do not hold, the pressure can still be 
eliminated by taking the curl of (2.2), resulting in 

curl (V x curl V) = 0. (2.6) 

Equations (2.1) and (2.6) constitute the kinematic formulation of a rotational 
incompressible flow. Equation (2.6) can be considered a compatibility relation 
which picks out those solutions of the continuity equation that are also dynamic- 
ally possible. Once the velocity field is determined, the pressure can be obtained 
by integration from (2.2). 

In  comparing the formulations of rotational and irrotational flows, one notes 
that the former is more involved in two respects. The equations describing the 
velocity field are of higher order, and also non-linear. In  addition, determination 
of the pressure requires an integration, instead of a simple arithmetical operation. 

3. Kinematic formulation of compressible flow 

The equations governing a compressible adiabatic flow are 

3.1. I rro ta t iml  jlow 

(3.1) 

(3.2) 

(3.3) 

div(pV) = 0, 

-(l/p)gradp = V.gradV = curlVxV+igradVa, 

V.grads = 0. 

Using the thermodynamic relation 

P = (8) 9 (3.4) 

where h is the specific enthalpy, (3.2) and (3.3) can be combined to yield 

V. grad (b + +Vz) = 0. (3.5) 

In  the following analysis, it  will be assumed that all the streamlines pass through a 
region where both 5 and h+&V2 are constant (such aa uniform flow). If the 
fact that the quantity h + &Va is unchanged at a shock discontinuity is used, it 

(3.6) 
follows from (3.5) that 

where h, is the stagnation enthalpy, which is a constant for the whole flow. 
Equation (3.6) is the condition for an isoenergetic flow. 

h + gva = h,, 

I n  the absence of shock waves, (3.3) leads to the additional Condition 

5 = 5,, (3.7) 

i.e. the flow is isentropic. When (3.2), (3.4), and (3.6) are used, it immediately 
follows that 

curlV = 0. (3.8) 

Therefore an isentropic isoenergetic flow is also irrotational. In  order to complete 
the kinematic formulation of such a flow, it is necessary to eliminate the density 
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from the continuity equation. Since the entropy is given, the density and pressure 
can be expressed as functions of the enthalpy for a given gas. In  other words, the 
functions 

and P = 92(%So) (3.10) 

are known once the entropy and gas are specified. Substitution of (3.6) and (3.9) 

(3.9) P = g,(h;so), 

into (3.1) yields 
div [gI(h, - +V2; SO) V] = 0. (3.11) 

Equations (3.8) and (3.11) constitute the kinematic formulation of the irrota- 
tational flow of an arbitrary gas. The introduction of a velocity potential results 
in a non-linear partial differential equation in one unknown. With the velocity 
determined, the pressure is then obtained from (3.10). 

3.2. General considerations for rotational flow 

It was seen above that the kinematic formulation of a compressible irrotational 
flow differs from the incompressible case only in that one of the equations is 
non-linear. The essential feature that the problem can be solved completely 
using a kinematic description has been preserved. In  each case, the knowledge 
of the velocity field is all that is required, since the thermodynamic variables 
are then found by simple substitution. 

If one now turns to the general case where (3.7) and (3.8) do not hold, one finds 
the situation more complicated. Equation (3.6) expresses the enthalpy as a 
function of the velocity, but the variables one must eliminate from (3.1) and 
(3.2) are the density and the pressure. The elimination of the pressure by taking 
the curl of the momentum equation as it stands is not possible. It would therefore 
be desirable to relate some other thermodynamic variable to the velocity. 

Fortunately, such a relationship does exist. Equation (3.1) can be written 

V.gradp = -pdivV, (3.12) 

while from (3.2) it  follows that 

V . grad p = - =$p V . grad V2. (3.13) 

Using (3.3), one then obtains 
V . grad V2 

(3.14) 

Here (aplap), is, of course, equal to the square of the speed of sound in the gss. 
The significant results for the steady, compressible adiabatic flow of an ideal gas 
may therefore be summarized as follows. 

A knowledge of the kinematics of the flow ( i .e .  the velocity jield) also determinw 
the speed of sound at every point. If the flow is isoenergetic, it also determines the 
specijic enthalpy at every point. 

The second result is well known, since it follows immediately from the definition 
of isoenergetic flow. However, the fist result, which comes from (3.14), has not 
been fully appreciated. It is this equation that actually provides the key for the 
kinematic formulation of the flow of an arbitrary gas. In  order to proceed further, 
one must distinguish between two types of gas laws-one in which h and 
(ap/ap), are functionally dependent, and the other in which they are independent 
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variables. Each will lead to a different kinematic formulation. Of course, there 
exist flows in which both cases are found in different regions of the flow. In  such 
an event, a different formulation must be used in the two regions. These two 
cases will be examined in the following sections. 

3.3 Rotational flow: (aplap), = f ( h )  

In  this section, it will be assumed that the speed of sound is functionally related - 

to the specific enthalpy; i.e. 
(3.15) 

With the aid of (3.4) it  can be easily shown that the density must satisfy the 

P = H(h)&s), (3.16) relation 

where (3.17) 

When (3.3), (3.6) and (3.16) are used, (3.1) may be rewritten as 
div [H(h,  - &V2) V] = 0. (3.18) 

The pressure law is obtained by integrating (3.4), using (3.16). Its general form is 

p = 4) W S )  + c(s), (3.19) 

A ( h )  = H(h)dh, (3.20) where 

and c(s) is an arbitrary function of s which is not proportional to S(s). In  order 
to determine c(s), one canuse the boundary condition that 

p(p  = 0) = 0. (3.21) 

This relation follows from the first and second laws of thermodynamics, written in 

(3.22) 
the form 

where T is the absolute temperature. As long as T remains bounded when 
p -+ 0, (3.22) requires that dp + 0 also. Therefore p = const. when p = 0, and 
since in this formulation, the pressure is defined only within an additive constant, 
the constant may be chosen equal to zero. An alternative proof depends on the 
relation between the specific enthalpy and the specific internal energy u, namely 

h = u+p/p. (3.23) 

Equation (3.21) then follows immediately if one imposes the condition that the 
enthalpy and internal energy remain bounded as p -+ 0. 

If the range of validity of (3.15) includes the value of h = a for which H(a) = 0, 
it  follows from (3.16), (3.19), and (3.21) that c(s) = 0 and A ( a )  = 0. On the other 
hand, if (3.15) does not hold for h = a, then the laws of thermodynamics alone 
cannot determine c(s). In  order to eliminate the pressure from the momentum 
equation, it will be necessary to set 

c(s) = 0. (3.24) 

Thus, if (3.15) is not valid at h = a, then (3.24) must be considered an additional 
assumption for the gas law. 

s 

1 

P 
T d s  = dh--dp, 
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Equations (3.16), (3.19), and (3.24) can be combined to yield 

P = P m ) ,  

where 

(3.26) 

(3.26) 

Substitution of (3.6) and (3.25) into (3.2) results in 

B(h, - *Vz) V . grad V +grad (lnp) = 0. 

The curl of (3.27) then gives the final form 

curl [B(ho - iVz)  V x curl V] = 0. (3.28) 

Equations (3.18) and (3.28) constitute the kinematic formulation of the rotational 
flow of a gas that obeys (3.15) (and is also subject to condition (3.24), if necessary). 
If Va Q 2h,, the equations reduce to (2.1) and (2.6), which are the corresponding 
expressions for an incompressible flow. It is seen that the compressible formula- 
tion differs chiefly in that the continuity equation is now also non-linear. With 
the velocity known, the pressure is obtained by integrating (3.27). "he enthalpy, 
density, and entropy are then found by substitution from (3.6), (3.25), and (3.16). 
The temperature can be evaluated by using the following formula, derived from 

(3.191, (3.22), and (3.24): p = -pT&?)/x'(s). (3.29) 

A special case of interest is the thermally perfect gas law, p = pRT. Prom 
(3.25) and (3.29), it  follows that 

S(s) = exp ( - s /R)  ; B(h) = - (3.30) 

(3.27) 

1 
RT ' 

If the gas is also calorically perfect, it can be readily shown tbt  

f ( h )  = (Y - 1 ) h  (3.31) 

where y is the ratio of specific heats. Equations (3.18), (3.27), and (3.28) then 

become div [ (h, - iV2)'/(~-') V] = 0, (3.32) 

V .grad V + Y-1 - (h, - 4V2) grad (hp) = 0, 
Y 

curl[ V x curl V ] = 0. 

(A, - iV2) 

(3.33) 

(3.34) 

This set of equations for a perfect gas was fist derived by Crocco (1937). 

3 -4. Rotational $ow : (8pj8p), and h are indep~nden~ variables 

The flow of a gas whose sound speed and enthalpy are independent variables will 
now be considered. Once such a gas is specified, the density and pressure are in 
principle known functions of these two variables; i.e. 

(3.35) 

(3.36) 



Kinematic formulation of rotational gas flow 

If (3.6), (3.14), (3.35), and (3.36) are substituted into (3.2), one obtains 

* grad V . grad V + grad F2 (ho - $V2), -7 
2dlvv 
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= 0. 

(3.37) 

Equation (3.37) represents the kinematic formulation of the rotational flow of a 
gas whose sound speed and enthalpy are independent variables. Since (3.14), 
which is a combination of the continuity and momentum equations, was used 
in deriving (3.37), no additional equation is required. A velocity field which is a 
solution of (3.37) satisfies all the conservation laws governing the flow. The 
thermodynamic state of the gas is then obtained directly from (3.6), (3.14), 
(3.35), and (3.36). It is important to note that no additional problem needs to be 
solved to determine the dynamical variables. This is in contrast with the situation 
that exists not only for the flow of a gas in which (ap/ap), = f (h) ,  but even for an 
incompressible flow. In  both these cases, the velocity field given by the kine- 
matic equations does not automatically determine the dynamical variables, but 
a further vectorial integration is required. In  this respect, the rotational flow of a 
perfectly arbitrary gas possesses a simplicity which is not present in a more 
specialized fluid. This is due to the fact that the kinematics of the flow brings 
with it knowledge concerning two thermodynamic variables. For a general gas, 
the knowledge is sufficient to determine the complete dynamics of the problem. 
But a gas that in this sense is degenerate already possesses some of this knowledge 
and therefore does not extract from the kinematics all the information that it 
needs. Consequently, the kinematic formulation of the flow of such a gas requires 
one more equation, and the determination of the dynamics requires an additional 
integration. Inasmuch as it completely uncouples the kinematics and the dy- 
namics, the rotational flow of an arbitrary gas may even be said to resemble an 
irrotational flow. 

For any given gas, (3.37) can be specialized further, since the functions Fl 
and F2 are not independent. They can be indirectly related through the equation 

(3.38) 

which follows directly from (3.4). To illustrate, two simple types of grts laws will 

(3.39) 
be considered. The first is 

where b is a constant and G(h) is an arbitrary function of h. Substituting (3.39) 
into (3.38), and solving for p ,  one obtains the expression for F2: 

P = bP+G(h), 

while Fl becomes 

(3.40) 



540 M .  Vimkur 

As a second example, let w(p)  be a function whose inverse can be written ex- 
plicitly. Define 

(3.42) 

Then if 

it  follows from (3.38) that 

while 

A special case of (3.43) is the relation 
P h = hl+v-  
Pn' 

(3.43) 

(3-44) 

(3.45) 

(3.46) 

(3.47) 

where h,, v and n are constants. Equation (3.47) has been suggested (Wohlwill 
1957) as giving a good approximation to the equation of state of partially dis- 
sociated air in the subsonic region behind a detached shock wave. If (1.2) is 
integrated using (3.4) (and the arbitrary function of s that is introduced is set 
equal to zero), one obtains 

(3.48) 

Thus, (1.2) is also seen to be a special case of (3.43). 

4. Discussion of results 
The main results of this investigation are embodied in (3.18), (3.28), and 

(3.37). Taken together, these equations give a kinematic representation of 
the rotational flow of any gas (except one obeying (3.19) with c(8) =I= 0). The 
complete formulation of a flow problem requires the specification of boundary 
conditions. These pose no difficulty since they can also be expressed kinematically, 
as is shown below. 

It has been implicitly assumed in this analysis that the stagnation enthalpy 
h, is a known quantity. This is certainly the case if one of the conditions of the 
problem is uniform flow at infinity. At any rate, the specification of h, is one of 
the boundary conditions. There are two types of boundary conditions involving 
geometric surfaces. One is a solid boundary, at which the normal component of 
velocity must be zero. The other is a surface of discontinuity, such as a shock 
wave. Here the tangential momentum equation leads to the condition that there 
is no jump in tangential velocity. The continuity and normal momentum equa- 
tions combined lead to a relation involving the normal velocity and the quantity 
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p/p on each side of the shock wave. But from (3.6), (3.14), (3.25), (3.35), and 
(3.36), it  follows that no matter which type of gas exists on either side, p/p can 
be expressed as a function of the velocity. Therefore, the shock boundary con- 
ditions can also be expressed in kinematic form. 

A few remarks should be made concerning the application of the two types of 
gas laws to an actual gas, At pressures normally encountered in flow problems, 
any gas is well approximated by an at least thermally perfect gas law up to 
the temperatures where dissociation or ionization become non-negligible. The 
formulation of $3.3 applies in this case. Another region of applicability is for a 
polyatomic gas which dissociates completely before it starts to ionize. In this 
temperature region, such a gas becomes monatomic and again behaves like a 
perfect gas. Both are examples of gases that obey (3.15) and also (3.24). On the 
basis of the behaviour of known gases, it seems doubtful that (3.15) can hold 
without at the same time (3.24) being true. 

The general gas law described in $3.4 should apply to all other gases. This 
includes a gas at such high pressures that cohesive forces and the finite volume of 
molecules force departures from the perfect gas law. A wider range of applic- 
ability is for a gas that is partially dissociated or ionized. A difficulty in practice 
is that explicit forms of (3.35), and (3.36) will usually not exist. For limited 
regions of the flow, special forms of the gas law such as (3.39) or (3.43) which do 
give rise to explicit expressions for Fl and F, may be found useful. 

It might be instructive as an illustration to consider the uniform flow of a 
polyatomic gas past a blunt-nosed body over a wide range of speeds. At very 
low speeds, the flow is incompressible and irrotational and is governed by 
equations (2.2) and (2.5). The problem is linear, and the kinematics and dynamics 
are completely uncoupled. As the speed increases, and compressibility can no 
longer be neglected, (2.2) has to be replaced by (3.11). This introduces a non- 
linearity, but the dynamics and kinematics are still uncoupled. As the critical 
Mach number is exceeded, shocks begin to form, and behind them the flow 
becomes rotational. When the uniform flow becomes supersonic, a detached shock 
wave forms ahead of the body, and the entire flow between the body and the 
shock wave is rotational. The gas initially will behave like a perfect gas, and 
will be described by (3.32) and (3.34). Not onlyhave bothequations become non- 
linear, but the integration of (3.33) is now required to determine the pressure, 
once the velocity is known. At still higher speeds the temperature in the nose 
region becomes high enough to excite vibration. The gas departs from a perfect 
gas, and the more general (3.18) and (3.28) must be used. As the uniform flow 
becomes hypersonic the gas in the nose region starts to dissociate. The flow is 
now described completely by (3.37), and the dynamics and kinematics are 
uncoupled again. If the gas dissociates completely before it begins to ionize, 
increasing the velocity even further will result in a flow near the nose that is 
again described by (3.32) and (3.34). 

The above example shows that the various types of rotational gas flows 
considered in this paper can easily occur in practice. There is a question whether 
the kinematic formulation of such flows can actually be useful in their solution. 
To answer this, one must first consider simpler problems. These include the 
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simplification of the equations for two-dimensional (planar or axisymmetric) 
flows, and the search for solutions that have simple kinematic properties by 
using inverse methods. Much of this work has already been done for the case 
of a perfect gas law (Prim 1952). The extension of some of these results to the 
more general types of gas laws considered here will be reported in a future 
publication. 
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